Data S1

MALDI TOF mass data of cleavage products

Products from T₆(EU)T₆; pT₆ (P1), calcd C₆₀H₇₉N₁₂O₄₃P₆ 1842.2 [M–H]⁻; found 1841.8; T₆pR (P2), calcd C₆₆H₉₀N₁₃O₄₅P₆ 1971.3 [M-H]⁻; found 1971.3; Product from (EU)T₂AT₂GT₂; pT₂AT₂GT₂ (P1), calcd for C₈₀H₁₀₃N₂₂O₅₄P₈ 2484.6 [M-H]⁻; found 2484.6; Product from T₂AT₂GT₂(EU)T; T₂AT₂GT₂pR (P2), calcd for $C_{86}H_{114}N_{23}O_{56}P_8$ 2613.7 [M–H]⁻; found 2613.8; Products from T₅A(EU)AT₅; pAT₅ (P1), calcd C₆₀H₇₈N₁₅O₄₁P₆ 1851.2 [M-H]⁻; found 1850.9; T₅ApR (P2), calcd C₆₆H₈₉N₁₆O₄₃P₆ 1980.3 [M–H]⁻; found 1980.2; Products from T₅C(EU)CT₅; pCT₅ (P1), calcd C₅₉H₇₈N₁₃O₄₂P₆ 1827.2 [M-H]⁻; found 1827.0; T₅CpR (P2), calcd C₆₅H₈₉N₁₄O₄₄P₆ 1956.3 [M–H]⁻; found 1956.3; Products from T₅G(EU)GT₅; pGT₅ (P1), calcd C₆₀H₇₈N₁₅O₄₂P₆ 1867.2 [M–H]⁻; found 1867.2; T₅GpR (P2), calcd C₆₆H₈₉N₁₆O₄₄P₆ 1996.3 [M–H]⁻; found 1996.2; Products from CGCA₂T(EU)TA₂CGC; pTA₂CGC (P1), calcd C₅₈H₇₄N₂₃O₃₆P₆ 1855.2 [M-H]⁻; found 1855.0; CGCA₂TpR (P2), calcd C₆₄H₈₅N₂₄O₃₈P₆ 1984.3 [M-H]⁻; found 1984.3. R (C₆H₁₁NO₂) was calculated on the supposition that the cleavage reaction was accompanied by elimination of EU and addition of methylamine and OH⁻.

Method S1

Preparation of DNA oligonucleotides containing 5-ethynyluracil (EU) DNA oligonucleotides containing EU were synthesized on the DNA synthesizer by using the standard phosphoramidite method. The phosphoramidite to incorporate EU into DNA oligonucleotides was synthesized according to the literature [12,13]. Phosphoramidites of natural DNA nucleosides (^{Bz}dA, ^{Ac}dC, ^{dmf}dG, and T) were purchased from Glen research. The coupling time of EU phosphoramidite was extended to 30 minutes to ensure high coupling efficiency. The last DMTr group was not deprotected on the DNA synthesizer (DMTr-ON). After automated DNA synthesis, the CPG-support was put into a screw-cap tube and 1 mL of 50 mM K₂CO₃/MeOH was added into the tube. The suspension was left at 25°C for 16 hours or 65°C for 4 hours. A small amount of H₂O was added to the suspension and MeOH in the suspension was removed by speed-vac. H_2O was added to the residue to reach a total volume of $\approx 500 \ \mu L$ and 28% NH₃aq (500 µL) was added to the suspension. The suspension was left at 25°C for 16 hours. NH₃ in the suspension was removed by speed-vac. The suspension was passed through a 0.45 µm filter. The DMTr-ON DNA oligonucleotides were purified by reversed-phase HPLC with a linear gradient over 20 minutes from 5 to 50% CH₃CN in 50 mM ammonium formate (AF). After speed-vac and freeze-drying to remove the solvent and AF, the DMTr group on the DNA oligonucleotides was removed in 80% AcOH aqueous solution (100 µL) at 25°C for 30 minutes. H₂O was added to the solution to reach a total volume of ≈1 mL. The DNA oligonucleotides were purified by reversed-phase HPLC with a linear gradient over 20 minutes from 5 to 20% CH₃CN in 50 mM AF. The purified DNA oligonucleotides were desalted and identified by MALDI TOF mass spectrometry except for long primers (\geq 30 mer): T₆(EU)T₆, calcd for C₁₃₁H₁₆₇N₂₆O₈₉P₁₂ 3901.5 [M–H]⁻; found 3901.8; (EU)T₂AT₂GT₂, calcd for C₉₁H₁₁₃N₂₄O₅₈P₈ 2718.8 [M–H]⁻; found 2718.9; T₂AT₂GT₂(EU)T, calcd for C₁₀₁H₁₂₆N₂₆O₆₅P₉ 3023.0 [M-H]⁻; found 3023.4; T₅A(EU)AT₅, calcd for C₁₃₁H₁₆₅N₃₂O₈₅P₁₂ 3919.6 [M–H]⁻; found 3920.3; T₅C(EU)CT₅, calcd for C₁₂₉H₁₆₅N₂₈O₈₇P₁₂ 3871.5 [M-H]⁻; found 3872.0; T₅G(EU)GT₅, calcd for C₁₃₁H₁₆₅N₃₂O₈₇P₁₂ 3951.6 [M-H]⁻; found 3952.5; CGCA₂T(EU)TA₂CGC, calcd for C₁₂₇H₁₅₇N₄₈O₇₅P₁₂ 3927.6 [M-H]⁻; found 3928.1; AG₂TGCT₃A(EU)GACTCT-GC₂G, calcd for C₂₀₆H₂₅₇N₇₄O₁₂₈P₂₀ 6437.1 [M-H]⁻; found 6437.8.

Methods S2

PCR amplification by using primers containing 5-ethynyluracil (EU)

KOD Fx neo (TOYOBO) was used for PCR. Before PCR, CGCA₂T(EU)TA₂CGC in ×1 buffer for KOD Fx neo was heated with a temperature program, 94°C, 2 min \rightarrow [98°C, 10 sec \rightarrow 60°C, 30 sec \rightarrow 68°C, 90 sec] ×30 \rightarrow 4°C. After heating, the sample was directly analyzed by reversed-phase HPLC with a linear gradient over 20 minutes from 5 to 20% CH₃CN in 50 mM AF (Fig. S5). PCR solution (50 µL) contained primers (0.4 µM, each), dNTPs (400 µM, each), buffer (×1), KOD Fx neo (1 U), and template DNA, EcoRI-digested pBluescript-sk(–) (200 ng) or linear λ phage DNA (1 ng). The linear λ phage DNA (N3011) was purchased from New England Biolabs. DNA fragments for the construction of the 3.7 kbp plasmid were amplified using a temperature program, 94°C, 2 min \rightarrow [98°C, 10 sec \rightarrow 60°C, 30 sec \rightarrow 68°C, 90 sec] ×30 \rightarrow 4°C. The PCR-amplified DNA fragments were analyzed on a 1% agarose gel containing ethidium bromide in TAE buffer by electrophoresis.

Methods S3

DNA base analogues for DNA cleavage

We found that the DNA base analogues described below can cause the same DNA cleavage as that induced by EU. Their synthetic schemes are shown following their respective synthetic procedures.

Preparation of T₆(T1)T₆

 $T_6(T1)T_6$ was postsynthetically prepared from the DNA oligonucleotide containing 5-ethynyluracil (PU) [17]. AgNO₃aq (100 mM, 200 µL) was added to $T_6(PU)T_6$ aqueous solution (1 mM strand concentration, 200 µL) [18]. The solution was mixed and left at 25°C for 16 hours. After addition of NaOHaq (10 M, 20 µL) [19], the solution was mixed and left at 25°C for 2 hours. H₂O (600 µL) containing acetic acid (20 µL) was added to the solution. The solution was filtered with 0.45 nm filter. The product was purified by reversed-phase HPLC with a linear gradient over 20 minutes from 8 to 20% CH₃CN/50 mM AF. The retention time of the product was 12.5 minutes. After desalination, the product was identified by MALDI TOF mass spectrometry: $T_6(T1)T_6$, calcd for $C_{137}H_{173}N_{26}O_{90}P_{12}$ 3995.6 [M–H]⁻; found 3995.6.

6-N-(3-propynyl)-5-methyl-2'-deoxycytidine (1)

Thymidine (1.21 g, 5.00 mmol) was suspended in CH₃CN (20 mL). Triethylamine (5.58 mL, 40.0 mmol) and acetic anhydride (1.89 mL, 20.0 mmol) were added to the suspension. After stirring at 25°C for 21 hours, methanol (10 mL) was added to the solution and stirred for 2 hours. The solvent was removed by evaporation. AcOEt (100 mmL) and saturated NaClaq (100 mL) were added to the residue and the product was extracted to the organic layer. The organic layer was washed with saturated NaClag (100 mL) twice, dried over magnesium sulfate, and filtered. The solvent was removed by evaporation and the residue was dried under reduced pressure. 1,2,4-triazole (3.45 g, 50 mmol), CH₃CN (30 mL), and triethylamine (7.67 mL, 55.0 mmol) were added to the residue. POCl₃ (932 µL, 10.0 mmol) was slowly added to the solution under constant stirring. After stirring for 1 hour, the solvent was removed by evaporation. AcOEt (100 mmL) and saturated NaClag (100 mL) were added to the residue and the product was extracted to the organic layer. The organic layer was washed with saturated NaClaq (100 mL) twice, dried over magnesium sulfate, and filtered. The solvent was removed by evaporation and the residue was dried under reduced pressure [20]. 1,4-dioxane (30 mL) was added to the residue and the solution was stirred. Propargylamine (961 μ L, 15.0 mmol) was added to the solution. After stirring at 25°C for 2 hours, methanol (30 mL) and 28% NH₃aq (30 mL) were added to the solution. The solution was stirred at 25°C for 24 hours. The solvent was removed by evaporation and the product **1** was purified by silica gel column chromatography (10–15% MeOH/CH₂Cl₂). The product **1** was obtained as a white powder (873 mg, 3.13 mmol, 63%): ¹H NMR (DMSO-d6) δ 7.65 (d, *J* = 0.9, 1H), 7.57 (t, *J* = 5.7, 1H), 5.19 (d, *J* = 4.6, 1H), 5.01 (t, *J* = 5.3, 1H), 4.23-4.18 (m, 1H), 4.14-4.01 (m, 2H),3.76-3.74 (m, 1H),3.62-3.50 (m, 2H), 3.04 (t, *J* = 2.5, 1H),2.12-2.05 (m, 1H),1.99-1.92 (m, 1H),1.84 (s, 3H); ¹³C NMR (DMSO-d6) δ 162.4, 154.9, 138.0, 101.7, 87.2, 84.8, 81.5, 72.6, 70.4, 61.4, 40.3, 29.4, 13.0; HRMS (ESI) calcd for C₁₃H₁₇N₃O₄Na ([M+Na]⁺) 302.1116, found 302.1117.

5'-O-dimetoxytrityl-6-N-(3-propynyl)-5-methyl-2'-deoxycytidine (2)

Pyridine (10 mL) was added to **1** (312 mg, 1.12 mmol) and DMTrCl (454 mg, 1.34 mmol). The solution was stirred at 25°C for 1 hour. After addition of methanol (10 mL), the solvent was removed by evaporation. The residual pyridine was removed by coevaporation with CH₂Cl₂ and hexane. The product **2** was purified by silica gel column chromatography (2–5% MeOH, 2% Et₃N/CH₂Cl₂). The product **2** was obtained as a white powder (631 mg, 0.924 mmol, 83%): ¹H NMR (DMSO-d6) δ 7.63 (t, *J* = 5.7, 1H), 7.51 (s, 1H), 7.39-7.35 (m, 2H),7.32-7.19 (m, 7H), 6.90-6.86 (m, 4H),6.21 (t, *J* = 6.6, 1H), 5.34 (d, *J* = 4.1, 1H), 4.31-4.25 (m, 1H), 4.14-4.02 (m, 2H),3.90-3.86 (m, 1H),3.72 (s, 6H), 3.22-3.16 (m, 2H),3.09-3.00 (m, 6H),2.21-2.06 (m, 2H),1.50 (s, 3H), 1.23-1.15 (m, 9H); ¹³C NMR (DMSO-d6) δ 162.3, 158.1, 157.9, 154.8, 144.7, 137.4, 135.5, 135.3, 130.0, 127.9, 127.7, 126.8, 113.2, 113.0, 101.9, 85.8, 85.4, 84.6, 81.4, 72.6, 70.5, 63.6, 55.0, 45.3, 29.4, 8.4; HRMS (ESI): calcd for C₃₄H₃₅N₃O₆Na ([M+Na]⁺) 604.2525, found 604.2424.

Preparation of T₆(C1)T₆

2 (291 mg, 0.426 mmol) was dissolved in CH₃CN (5 mL). Disopropylethylamine (261 μ L, 1.50 mmol) and 2-cyanoethyl *N*,*N*-diisopropylchlorophosphoramidite (223 μ L, 1.00 mmol) was added to the solution. The solution was stirred at 25°C for 30 minutes. AcOEt (25 mL) and saturated NaClaq (25 mL) were added to the suspension. The product was extracted to the organic layer. The organic layer was washed with saturated NaClaq (25 mL) twice, dried over magnesium sulfate,

and filtered. The solvent was removed by evaporation and the residue was dried by coevaporation with acetonitrile and further dried under reduced pressure. After dissolving the residue to CH₃CN (10 mL), the phosphoramidite solution was used directly for automated DNA synthesis. $T_6(C1)T_6$ was synthesized by standard phosphoramidite method on the DNA synthesizer. The protected oligonucleotide was cleaved by 28% NH₃aq from the solid support and deprotected at 25°C for 16 hours in 28% NH₃aq. After removal of ammonia by speed-vac, the aqueous solution was filtered through 0.45 µm filter. $T_6(C1)T_6$ was purified by reversed-phase HPLC with a linear gradient over 20 minutes from 0 to 50% CH₃CN/50 mM AF. The retention time of the product was 10.6 minutes. After the desalination, the product was identified by MALDI TOF mass spectrometry: $T_6(C1)T_6$, calcd for $C_{133}H_{172}N_{27}O_{88}P_{12}$ 3928.6 [M–H][–]; found 3928.8.

a pale brown oil (700 mg, 1.50 mmol, 69%): ¹H NMR (DMSO-d6) δ 8.64 (s, 1H), 8.44 (s, 1H), 7.43-7.34 (m, 5H), 6.12 (t, *J* = 6.2, 1H), 5.23 (d, *J* = 4.1, 1H), 5.13 (t, *J* = 4.8, 1H), 4.26-4.21 (m, 1H), 3.84-3.81 (m, 1H), 3.70-3.44 (m, 6H), 2.26-2.20 (m, 1H), 2.08-2.01 (m, 1H), 1.66-1.52 (m, 4H), 1.32-1.22 (m, 4H), 0.90 (t, *J* = 7.3, 3H), 0.82 (t, *J* = 7.3, 3H); ¹³C NMR (DMSO-d6) δ 169.7, 157.4, 153.4, 145.3, 130.7, 128.6, 128.1, 123.2, 97.5, 91.6, 87.6, 85.8, 84.5, 69.7, 60.7, 54.9, 51.4, 45.4, 41.0, 30.4, 28.5, 19.6, 19.1, 13.5; HRMS (ESI) calcd for C₂₆H₃₅N₄O₄ ([M+H]⁺) 467.2658, found 467.2653.

5'-*O*-dimethoxytrityl-4-*N*-[*N*,*N*-di(*n*-butyl)aminomethylene]-5-phenylethynyl -2'-deoxycytidine (4)

Pyridine (10 mL) was added to **3** (700 mg, 1.50 mmol) and DMTrCl (763 mg, 2.25 mmol). The solution was stirred at 25°C for 1 hour. After addition of methanol (10 mL), the solvent was removed by evaporation. The residual pyridine was removed by coevaporation with CH₂Cl₂ and hexane. The product **4** was purified by silica gel column chromatography (0–5% MeOH, 2% Et₃N/CH₂Cl₂). The product **4** was obtained as white powder (924 mg, 1.20 mmol, 80%): ¹H NMR (DMSO-d6) δ 8.65 (s, 1H), 8.17 (s, 1H), 7.44-6.81 (m, 18H), 6.14 (t, *J* = 6.6, 1H), 5.32 (d, *J* = 4.6, 1H), 4.31-4.26 (m, 1H), 4.02-3.97 (m, 1H), 3.644 (s, 3H), 3.637 (s, 3H), 3.57-3.49 (m, 4H), 3.23-3.16 (m, 2H), 2.36-2.30 (m, 1H), 2.17-2.10 (m, 1H), 1.66-1.53 (m, 4H), 1.32-1.22 (m, 4H), 0.91 (t, *J* = 7.3, 3H); ¹³C NMR(DMSO-d6) δ 169.7, 158.03, 158.01, 157.5, 153.4, 144.7, 144.3, 135.6, 135.4, 130.6, 129.7, 129.6, 128.3, 127.93, 127.86, 127.6, 126.6, 123.0, 113.2, 97.9, 91.7, 86.2, 85.9, 83.9, 70.6, 63.5, 54.9, 54.5, 45.4, 41.2, 30.4, 28.5, 19.6, 19.1, 13.5; HRMS (ESI): calcd for C₄₇H₅₃N₄O₆ ([M+H]⁺) 769.3965, found 769.3985.

Preparation of T₆(C2)T₆

4 (109 mg, 0.142 mmol) was dissolved in CH₃CN (5 mL). Triethylamine (157 μ L, 1.13 mmol) and 2-cyanoethyl *N*,*N*-diisopropylchlorophosphoramidite (126 μ L, 0.565 mmol) was added to the solution. The solution was stirred at 25°C for 30 minutes. AcOEt (25 mL) and saturated NaClaq (25 mL) were added to the suspension. The product was extracted to the organic layer. The organic layer was washed with saturated NaClaq (25 mL) twice, dried over magnesium sulfate, and filtered. The solvent was removed by evaporation and the residue was dried by coevaporation with acetonitrile and further dried under reduced pressure.

After dissolving the residue to CH₃CN (4.7 mL), the phosphoramidite solution was used directly for automated DNA synthesis. $T_6(C2)T_6$ was synthesized by the standard phosphoramidite method on the DNA synthesizer. The last DMTr group was not deprotected on the DNA synthesizer. The protected oligonucleotide was cleaved by 28% NH₃aq from the solid support and deprotected at 25°C for 16 hours in 28% NH₃aq. After removal of ammonia by speed-vac, the aqueous solution was filtered through a 0.45 µm filter. 5'-DMTr-T₆(C2)T₆ was purified by reversed-phase HPLC with a linear gradient over 20 minutes from 5 to 50% CH₃CN/50 mM AF. The retention time of the 5'-DMTr-T₆(C2)T₆ was 15.2 minutes. After speed-vac and freeze-drying to remove the solvent and AF, the DMTr group was removed at 25°C for 30 minutes in 80% AcOHaq (100 μ L). The solution was diluted with H₂O to be \approx 1 mL and passed through a 0.45 m filter. $T_6(C2)T_6$ was purified by reversed-phase HPLC with a linear gradient over 20 minutes from 8 to 20% CH₃CN/50 mM AF. The retention time of the product was 13.6 minutes. After the desalination, the product was identified by MALDI TOF mass spectrometry: $T_6(C2)T_6$, calcd for C₁₃₇H₁₇₂N₂₇O₈₈P₁₂ 3976.6 [M–H]⁻; found 3977.1.

8-(2-formylphenyl)-2'-deoxyadenosine (5)

8-bromo-2'-deoxyadenosine (2.20 g, 6.66 mmol) [23], 2-formylbenzene boronic acid (2.00 g, 13.3 mmol), palladium (II) acetate (150 mg, 0.666 mmol), triphenylphosphine (525 mg, 2.00 mmol), and potassium carbonate (1.84 g, 13.3 mmol) were stirred in acetonitrile (40 mL) and H₂O (20 mL) at 80°C for 4 hours [24,25]. The solvent was removed by evaporation. Methanol (200 mL) was added to the residue. The resulting solution was filtered. The solvent was removed by evaporation. The product **5** was purified by silica gel column chromatography (10% MeOH/CH₂Cl₂). The product **5** was obtained as white powder (1.81 g, 5.09 mmol, 76%): ¹H NMR (DMSO-d6) δ 9.93 (s, 1H), 8.18 (s,

1H), 8.09-8.07 (m, 1H), 7.90-7.80 (m, 2H), 7.74-7.72 (m, 1H), 7.46 (br, 2H), 5.90 (dd, J = 8.5, 6.2, 1H), 5.49 (dd, J = 8.3, 4.1, 1H), 5.17 (d, J = 4.1, 1H), 4.39-4.35 (m, 1H), 3.82-3.79 (m, 1H), 3.65-3.59 (m, 1H), 3.50-3.44 (m, 1H), 3.19 (ddd, J = 12.8, 8.7, 6.0, 1H), 2.06 (ddd, J = 13.0, 6.2, 1.8, 1H); ¹³C NMR (DMSO-d6) δ 191.7, 156.2, 152.3, 149.6, 147.4, 135.4, 133.8, 131.5, 131.4, 130.8, 129.5, 119.3, 88.3, 85.7, 71.3, 62.2, 37.4; HRMS (ESI) calcd for C₁₇H₁₈N₅O₄ ([M+H]⁺) 356.1359, found 356.1364.

6-*N*-[*N*,*N*-di(*n*-butyl)aminomethylene]-8-(2-formylphenyl)-2'-deoxyadenosin e (6)

5 (1.55 g, 4.36 mmol) was dissolved in methanol (20 mL). *N*,*N*-di(*n*-butyl)-formamide dimethyl acetal (8.14 mL, 34.8 mmol) was added to the solution [22]. The solution was stirred at 25°C for 2 hours. The solvent was removed by evaporation. The product **6** was purified by silica gel column chromatography (2–5% MeOH/CH₂Cl₂). The product **6** was obtained as a pale brown oil (1.40 g, 2.83 mmol, 65%): ¹H NMR (DMSO-d6) δ 9.92 (s, 1H), 8.91 (s, 1H), 8.45 (s, 1H), 8.09 (d, *J* = 7.8, 1H), 7.91-7.82 (m, 2H), 7.74 (d, *J* = 7.3, 1H), 5.94 (dd, *J* = 7.8, 6.8, 1H), 5.28 (dd, *J* = 7.6, 4.4, 1H), 5.18 (d, *J* = 4.1, 1H), 4.40-4.36 (m, 1H), 3.81-3.77 (m, 1H), 3.64-3.41 (m, 6H), 3.25-3.18(m, 1H), 2.09-2.04 (m, 1H), 1.62-1.52 (m, 4H), 1.33-1.22 (m, 4H), 0.94-0.83 (m, 6H); ¹³C NMR(DMSO-d6) δ 191.8, 159.5, 157.9, 151.7, 151.6, 149.3, 135.5, 133.8, 131.5, 131.3, 130.9, 129.7, 125.8, 88.2, 85.5, 71.2, 62.1, 50.9, 44.4, 37.2, 30.4, 28.7, 19.6, 19.1,13.7, 13.5; HRMS (ESI) calcd for C₂₆H₃₅N₆O₄ ([M+H]⁺) 495.2720, found 495.2718.

5'-*O*-dimethoxytrityl-6-*N*-[*N*,*N*-di(*n*-butyl)aminomethylene]-8-(2-formylphen yl)-2'-deoxyadenosine (7)

Pyridine (10 mL) was added to **6** (1.31 g, 2.64 mmol) and DMTrCl (991 mg, 2.92 mmol). The solution was stirred at 25°C for 1 hour. After addition of methanol (10 mL), the solvent was removed by evaporation. The residual pyridine was removed by coevaporation with CH_2Cl_2 and hexane. The product **7** was purified by silica gel column chromatography (2% MeOH, 2% Et₃N/CH₂Cl₂). The product **7** was obtained as a white powder (1.24 g, 1.56 mmol, 59%): ¹H NMR (DMSO-d6) δ 9.89 (s, 1H), 8.88 (s, 1H), 8.25 (s, 1H), 8.06-8.04 (m, 1H), 7.88-7.78 (m, 3H), 7.33-7.31 (m, 2H), 7.21-7.15 (m, 7H), 6.81-6.73 (m, 4H), 5.98 (t, *J* = 6.9, 1H), 5.25 (d, *J* = 4.6, 1H), 4.57-4.53 (m, 1H), 3.94-3.90 (m, 1H), 3.71 (s, 3H), 3.69 (s, 3H), 3.59-3.53 (m, 2H), 3.44-3.32 (m, 3H), 3.20-3.12 (m, 2H),

2.11 (ddd, J = 13.0, 7.3, 4.3, 1H), 1.62-1.52 (m, 4H), 1.34-1.23 (m, 4H), 0.90-0.87 (m, 6H); ¹³C NMR(DMSO-d6) δ 191.6, 159.2, 157.9, 157.9, 157.7, 151.8, 149.5, 145.0, 135.7, 135.60, 135.55, 133.6, 131.7, 131.4, 130.7, 129.7, 129.5, 129.1, 127.6, 126.5, 125.6, 113.0, 112.9, 85.8, 85.2, 84.8, 71.0, 63.6, 54.94, 54.90, 50.9, 44.4, 36.3, 30.4, 28.7, 19.6, 19.1, 13.7, 13.5; HRMS (ESI): calcd for C₄₇H₅₃N₆O₆ ([M+H]⁺) 797.4027, found 797.4046.

Preparation of T₆(A1)T₆

7 (159 mg, 0.200 mmol) was dissolved in CH₃CN (5 mL). Triethylamine (223 μ L, 1.60 mmol) and 2-cyanoethyl N,N-diisopropylchlorophosphoramidite (178 µL, 0.800 mmol) were added to the solution. The solution was stirred at 25°C for 30 minutes. AcOEt (25 mL) and saturated NaClag (25 mL) were added to the suspension. The product was extracted to the organic layer. The organic layer was washed with saturated NaClaq (25 mL) twice, dried over magnesium sulfate, and filtered. The solvent was removed by evaporation and the residue was dried by coevaporation with acetonitrile and further dried under reduced pressure. After dissolving the residue in CH₃CN (10 mL), the phosphoramidite solution was used directly for automated DNA synthesis. $T_6(A1)T_6$ was synthesized by the standard phosphoramidite method on the DNA synthesizer. The last DMTr group was not deprotected on the DNA synthesizer. The protected oligonucleotide was cleaved from the solid support using 28% NH₃aq and deprotected at 25°C for 16 hours in 28% NH₃aq. After removal of ammonia by speed-vac, the aqueous solution was filtered through a 0.45 μ m filter. 5'-DMTr-T₆(C2)T₆ was purified by reversed-phase HPLC with a linear gradient over 20 minutes from 0 to 50% CH₃CN/50 mM AF. The retention time of the 5'-DMTr-T₆(A1)T₆ was 16.5 minutes. After speed-vac and freeze-drying to remove the solvent and AF, the DMTr group was removed at 25°C for 30 minutes in 80% AcOHag (100 µL). The solution was diluted with H₂O to 1 mL and filtered through a 0.45 m filter. $T_6(C2)T_6$ was purified by reversed-phase HPLC with a linear gradient over 20 minutes from 5 to 20% CH₃CN/50 mM AF. The retention time of the product was 14.9 minutes. After the desalination, the product was identified by MALDI TOF mass spectrometry: T₆(A1)T₆, calcd for C₁₃₇H₁₇₂N₂₉O₈₈P₁₂ 4004.7 [M-H]⁻; found 4005.2.

8-(2-formylphenyl)-2'-deoxyguanosine (8)

8-bromo-2'-deoxyguanosine (3.46 g, 10.0 mmol) [26], 2-formylbenzene boronic acid (3.00 g, 20.0 mmol), palladium (II) acetate (224 mg, 1.00 mmol),

triphenylphosphine (787 mg, 3.00 mmol), and potassium carbonate (2.76 g, 20 mmol) were stirred in acetonitrile (80 mL) and H₂O (40 mL) at 80°C for 4 hours [24,25]. The solvent was removed by evaporation. Methanol (200 mL) was added to the residue. The resultant solution was filtered. The solvent was removed by evaporation. The product **8** was purified by silica gel column chromatography (10–20% MeOH/CH₂Cl₂). The product **8** was obtained as a pale yellow powder (2.97 g, 8.00 mmol, 80%): ¹H NMR (DMSO-d6) δ 10.80 (br, 1H), 9.85 (s, 1H), 7.98 (dd, *J* = 7.8, 1.4, 1H),7.84-7.80 (m, 1H), 7.75-7.67 (m, 2H), 6.47 (br, 2H), 5.92 (dd, *J* = 8.2, 6.4, 1H), 5.10 (d, *J* = 4.1 Hz, 1H), 4.89-4.86 (m, 1H), 4.21-4.18 (m, 1H), 3.72-3.69 (m, 1H), 3.49-3.38 (m, 2H), 2.98 (ddd, *J* = 13.2, 8.2, 5.9, 1H), 4.20 (ddd, *J* = 13.3, 6.4, 2.3, 1H); ¹³C NMR(DMSO-d6) δ 191.7, 156.5, 153.3, 151.8, 143.4, 135.5, 133.5, 132.5, 131.4, 130.1, 128.4, 117.5, 87.8, 84.6, 71.0, 61.9, 36.8; HRMS (ESI) calcd for C₁₇H₁₇N₅O₄Na ([M+Na]⁺) 394.1127, found 394.1115.

2-*N*-[*N*,*N*-di(*n*-butyl)aminomethylene]-8-(2-formylphenyl)-2'-deoxyguanosin e (9)

8 (2.32 g, 6.25 mmol) was dissolved in methanol (20 mL). *N*,*N*-di(*n*-butyl)-formamide dimethyl acetal (11.7 mL, 50.0 mmol) was added to the solution [22]. The solution was stirred 25°C for 2 hours. The solvent was removed by evaporation. The product **9** was purified by silica gel column chromatography (5–10% MeOH/CH₂Cl₂). The product **9** was obtained as a pale yellow powder (2.10 g, 4.11 mmol, 66%): ¹H NMR (DMSO-d6) δ 11.51 (s, 1H), 9.89 (s, 1H), 8.53 (s, 1H), 8.02-8.00 (m, 1H), 7.87-7.83 (m, 1H), 7.77-7.73 (m, 1H), 7.69-7.67 (m, 1H), 5.92 (dd, *J* = 7.8, 6.9, 1H), 5.16 (d, *J* = 4.2, 1H), 4.85-4.82 (m, 1H), 4.33-4.29 (m, 1H), 3.76-3.73 (m, 1H), 3.58-3.35 (m, 6H), 3.14 (ddd, *J* = 13.7, 7.3, 6.4, 1H), 2.05 (ddd, *J* = 13.3, 6.4, 2.8, 1H), 1.63-1.54 (m, 4H), 1.35-1.23 (m, 4H), 0.94-0.89 (m, 6H); ¹³C NMR(DMSO-d6) δ 191.7, 157.8, 157.4, 157.3, 150.5, 144.6, 135.5, 133.6, 132.1, 131.3, 130.2, 128.7, 120.5, 87.8, 85.0, 71.0, 62.0, 51.2, 44.9, 37.3, 30.3, 28.5, 19.6, 19.1, 13.7, 13.5; HRMS (ESI) calcd for C₂₆H₃₄N₆O₅Na ([M+Na]⁺) 533.2488, found 533.2481.

5'-*O*-dimethoxytrityl-2-*N*-[*N*,*N*-di(*n*-butyl)aminomethylene]-8-(2-formylphen yl)-2'-deoxyguanosine (10)

Pyridine (16 mL) was added to **9** (2.10 g, 4.11 mmol) and DMTrCl (1.53 g, 4.52 mmol). The solution was stirred at 25° C for 1 hour. After addition of methanol (10 mL), the solvent was removed by evaporation. The residual pyridine was

removed by coevaporation with CH₂Cl₂ and hexane. The product **10** was purified by silica gel column chromatography (80–98% AcOEt, 2% Et₃N/*n*-hexane). The product **10** was obtained as a pale yellow powder (2.20 g, 2.71 mmol, 66%): ¹H NMR (DMSO-d6) δ 11.52 (s, 1H), 9.88 (s, 1H), 8.38 (s, 1H), 7.98 (d, J = 7.8 Hz, 1H), 7.80-7.79 (m, 2H), 7.74-7.70 (m, 1H), 7.31-7.29 (m, 2H), 7.20-7.15 (m, 7H), 6.79-6.72 (m, 4H), 6.00 (dd, J = 8.0, 4.8 Hz, 1H), 5.19 (d, J = 5.1 Hz, 1H), 4.54-4.48 (m, 1H), 3.84-3.80 (m, 1H), 3.70 (s, 3H), 3.69 (s, 3H), 3.47-3.43 (m, 2H), 3.31-3.26 (m, 1H), 3.21-3.13 (m, 3H), 3.07-3.04 (m, 1H), 2.17 (ddd, J = 13.7, 8.0, 5.8 Hz, 1H), 1.59-1.51 (m, 2H), 1.45-1.36 (m, 2H), 1.33-1.24 (m, 2H), 1.15-1.09 (m, 2H), 0.93-0.89 (m, 3H), 0.79-0.75 (m, 3H); ¹³C NMR(DMSO-d6) δ 191.6, 158.0, 157.9, 157.5, 157.3, 156.9, 150.3, 144.9, 144.8, 135.7, 135.6, 133.4, 132.5, 131.2, 130.1, 129.6, 129.4, 128.3, 127.6, 126.5, 120.4, 112.9, 85.4, 85.2, 84.0, 70.6, 63.6, 55.0, 54.9, 51.2, 45.0, 37.6, 30.2, 28.5, 19.6, 19.0, 13.7, 13.5; HRMS (ESI): calcd for C₄₇H₅₃N₆O₇ ([M+H]⁺) 813.3976, found 813.3976.

Preparation of T₆(G1)T₆

10 (163 mg, 0.200 mmol) was dissolved in CH₃CN (5 mL). Triethylamine (223 μ L, 1.60 mmol) and 2-cyanoethyl N,N-diisopropylchlorophosphoramidite (178 µL, 0.800 mmol) were added to the solution. The solution was stirred at 25°C for 30 minutes. AcOEt (25 mL) and saturated NaClag (25 mL) were added to the suspension. The product was extracted to the organic layer. The organic layer was washed with saturated NaClag (25 mL) twice, dried over magnesium sulfate, and filtered. The solvent was removed by evaporation and the residue was dried by coevaporation with acetonitrile and further dried under reduced pressure. After dissolving the residue in CH₃CN (10 mL), the phosphoramidite solution was used directly for automated DNA synthesis. $T_6(G1)T_6$ was synthesized by standard phosphoramidite method on the DNA synthesizer. The last DMTr group was not deprotected on the DNA synthesizer. The protected oligonucleotide was cleaved by 28% NH₃aq from the solid support and deprotected at 25°C for 16 hours in 28% NH₃aq. After removal of ammonia by speed-vac, the aqueous solution was filtered through a 0.45 μ m filter. 5'-DMTr-T₆(G1)T₆ was purified by reversed-phase HPLC with a linear gradient over 20 minutes from 5 to 50% CH₃CN/50 mM AF. The retention time of the 5'-DMTr-T₆(G1)T₆ was 15.2 minutes. After speed-vac and freeze-drying to remove the solvent and AF, the DMTr group was removed at 25°C for 30 minutes in 80% AcOHag (100 µL). The solution was diluted with H_2O to 1 mL and filtered through 0.45 m filter. $T_6(C2)T_6$

was purified by reversed-phase HPLC with a linear gradient over 20 minutes from 5 to 20% CH₃CN/50 mM AF. The retention time of the product was 14.6 minutes. After desalination, the product was identified by MALDI TOF mass spectrometry: $T_6(G1)T_6$, calcd for $C_{137}H_{172}N_{29}O_{89}P_{12}$ 4020.7 [M–H]⁻; found 4022.0.

DNA cleavage reaction using designed DNA base analogues

DNA cleavage was carried out using an aqueous solution of DNA oligonucleotides (100 μ M) in a screw-cap tube. The same volume of 40% methylamine was added to the sample and the resulting solution was heated at 70°C in a water bath. After removal of methylamine by speed-vac, the sample was directly analyzed by reversed-phase HPLC with a linear gradient over 20 min from 8% to 20% CH₃CN in 50 mM AF. The cleavage products, P1 and P2 were purified, desalted by the HPLC and identified by MALDI TOF mass spectrometry: P1 (pT₆), calcd for C₆₀H₇₉N₁₂O₄₃P₆ 1843.2 [M–H]⁻; found 1841.6 (P1(T₆(T1)T₆)), 1841.8 (P1(T₆(C1)T₆)), 1842.0 (P1(T₆(C2)T₆)), 1842.0 (P1(T₆(C1)T₆)), 1842.2 (P1(T₆(G1)T₆)); P2 (T₆pR), calcd for C₆₆H₉₀N₁₃O₄₅P₆ 1971.3 [M–H]⁻; found 1971.0 (P2(T₆(C1)T₆)), 1971.4 (P2(T₆(C1)T₆)), 1971.1 (P2(T₆(C2)T₆)), 1971.2 (P2(T₆(A1)T₆)), and 1971.0 (P2(T₆(G1)T₆)).

Methods S4

5'-phosphorylation of the DNA oligonucleotide using 5-phenylethynyluracil (PU)

Here, we used 5-phenylethynyluracil (PU) instead of 5-ethynyluracil because of the more facile synthesis of the corresponding phosphoramidite [17]. DMTr-(PU)T₂AT₂GT₂ was synthesized on the automated DNA synthesizer by the DMTr ON method. DMTr-(PU)T₂AT₂GT₂ was deprotected in 28% NH₃aq at 25°C for 16 hours. After removal of ammonia by speed-vac, the solution was passed through a 0.45 µm filter and the solution was analyzed by reversed-phase HPLC with a linear gradient over 20 min from 0% to 50% CH₃CN in 50 mM AF. The major product was purified, desalinated by reversed-phase HPLC, and identified by MALDI TOF mass spectrometry: DMTr-(PU)T₂AT₂GT₂, calcd for C₁₁₈H₁₃₆N₂₄O₆₀P₈ 3099.3 [M-H]⁻; found 3097.7. The degradation of the DMTr-containing moiety of DMTr-(PU)T₂AT₂GT₂ was carried out by heating in 50% ethylenediamine aqueous solution at 70°C for 8 hours. The solution was neutralized by AcOH. The solution was passed through a 0.45 µm filter and the solution was analyzed by reversed-phase HPLC. The major product was purified, desalinated by reversed-phase HPLC, and identified by MALDI TOF mass spectrometry: $pT_2AT_2GT_2$, calcd for $C_{80}H_{103}N_{22}O_{54}P_8$ 2484.6 [M-H]⁻; found 2484.6.